
Peter Kos // 9/13/22

LLDB + Chisel
debug your apps, but better this time

(again)

+ +LLDB ChiselDebugging

Debugging

Pauses output
repeatedly to

catch the faulty
code

Breakpoints

fatalError(“a”)No debugging #nofix all bugs
in Jira

Conditional
Breakpoints

print(“aaaa”)

print(“On this
method, X was

hit”)
Uses Rust

i’ll have to admit…

print(“first”)
print(“here”)
print(“here 2”)

my git stashes

po user
po user.name
po user?.name
po user!.name!

po model.user
po model!.user!

but, every tool has its use:

Widget lifecycle

console.app
sysdump

symb. breakpoints

console.app

symb. breakpoints
sysdump

but, every tool has its use:

but, every tool has its use:

Widget lifecycle

console.app
sysdump

symb. breakpoints

CoreData

sysdump
a religion

cond. breakpoints

console.app

symb. breakpoints
sysdump

sysdump

cond. breakpoints
a religion

but, every tool has its use:

Widget lifecycle

console.app
sysdump

symb. breakpoints

CoreData

sysdump
a religion

cond. breakpoints

Day to day code

print debugging
commenting
breakpoints

console.app

symb. breakpoints
sysdump

sysdump

cond. breakpoints
a religion

breakpoints

print debugging
commenting

but, every tool has its use:

Widget lifecycle

console.app
sysdump

symb. breakpoints

CoreData

sysdump
a religion

cond. breakpoints

Day to day code

print debugging
commenting
breakpoints

console.app

symb. breakpoints
sysdump

sysdump

cond. breakpoints
a religion

you might not
need these!

but, every tool has its use:

Widget lifecycle

console.app
sysdump

symb. breakpoints

CoreData

sysdump
a religion

cond. breakpoints

Day to day code

print debugging
commenting
breakpoints

console.app

symb. breakpoints
sysdump

sysdump

cond. breakpoints
a religion

breakpoints

print debugging
commenting

console.app

symb. breakpoints
sysdump

console.app

cond. breakpoints

breakpointssysdump

symb. breakpoints

sysdump

a religion print debugging

commenting

atos

dSYMs

visual debugger

memory graph
instruments.app

LLDB

the most most-funnest terminal:

(lldb)

the most most-funnest terminal:

(lldb)

(lldb) po user?.name

(lldb) e -l Swift -- callFunc()

the quirky c-like truck:

(lldb) expr -l objc++ -O -- [[UIWindow keyWindow] _autolayoutTrace]

(lldb) e -l Swift -- unsafeBitCast(0x7fc72c8bc980, to: UITextView.self).backgroundColor = UIColor.blue

the quirky c-like truck:

(lldb) expr -l objc++ -O -- [[UIWindow keyWindow] _autolayoutTrace]

(lldb) e -l Swift -- unsafeBitCast(0x7fc72c8bc980, to: UITextView.self)
 .backgroundColor = UIColor.blue

the quirky c-like truck:

(lldb) expr -l objc++ -O -- [[UIWindow keyWindow] _autolayoutTrace]

(lldb) e ---x
 .backgroundColor = UIColor.blue

print the view hierarchy from auto layout’s pov

change a TextView’s background color to blue

the quirky c-like truck:

(lldb) expr -++--

(lldb) e -l Swift -- unsafeBitCast(0x7fc72c8bc980, to: UITextView.self)
 .backgroundColor = UIColor.blue

print the view hierarchy from auto layout’s pov

change a TextView’s background color to blue

the quirky c-like truck:

(lldb) expr -l objc++ -O -- [[UIWindow keyWindow] _autolayoutTrace]

(lldb) e -l Swift -- unsafeBitCast(0x7fc72c8bc980, to: UITextView.self)
 .backgroundColor = UIColor.blue

print the view hierarchy from auto layout’s pov

change a TextView’s background color to blue

actually useful things:

(lldb) e -l Swift -- let $pinAddr = 0x7df67c50

assign memory addresses to vars

(lldb) e -l Swift -- let $pin = unsafeBitCast($pinAddr, to: MKPinAnnotationView.self)

recast these to views

vppo

actually useful things:

Chisel

What if all this was ✨easier?

What if all this was ✨easier?

lldb.llvm.org/use/python.html

What if all this was ✨easier?

What if all this was ✨easier?

Chisel gives us a bunch of scripts!

pvc fvc

visualize dismiss

show/hide alamborder

border/unborder pcurl

Print recursive VC
description

Generate screenshot
of a view

Show/hide a view

Border/unborder a view

Find VC name w/ regex

Dismiss a VC

Border ambiguous
position views

Print NSURLSession as curl

Chisel gives us a bunch of scripts!

pvc fvc

visualize dismiss

show/hide alamborder

border/unborder pcurl

Print recursive VC
description

Generate screenshot
of a view

Show/hide a view

Border/unborder a view

Find VC name w/ regex

Dismiss a VC

Border ambiguous
position views

Print NSURLSession as curl

Chisel gives us a bunch of scripts!

All happens without resuming!

most of these have arguments, too:

most of these have arguments, too:

alamborder
 --color/-c <color>
 A color name such as 'red', ‘blue'
 --width/-w <width>
 Desired width of border.

most of these have arguments, too:

alamborder
 --color/-c <color>
 A color name such as 'red', ‘blue'
 --width/-w <width>
 Desired width of border.

~> alamborder -c “red” -w 2.0

whatsit work like?

<do live demo>

whatsit work like?

pasteapp.io

some extra help

whatsit work like?
some extra help

If you are also tired of typing

github.com/facebook/chisel

https://github.com/facebook/chisel

(again)

+ +LLDB ChiselDebugging

Peter Kos // 9/13/22

LLDB + Chisel
debug your apps, but better this time

